Rademacher functions in BMO

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

Sampling and Reconstruction of Bandlimited BMO-Functions

Functions of bounded mean oscillation (BMO) play an important role in complex function theory and harmonic analysis. In this paper a sampling theorem for bandlimited BMO-functions is derived for sampling points that are the zero sequence of some sine-type function. The class of sinetype functions is large and, in particular, contains the sine function, which corresponds to the special case of e...

متن کامل

A Note on Rademacher Functions and Computability

We will speculate on some computational properties of the system of Rademacher functions f n g. The n-th Rademacher function n is a step function on the interval [0; 1), jumping at nitely many dyadic rationals of size 1 2 n and assuming values f1; 1g alternatingly.

متن کامل

An Inequality concerning the Rademacher Functions

Let rj , j = 0, 1, . . . be the Rademacher functions on [0, 1]. We prove that for every measurable subset E of [0, 1] with |E| > 0 and for each λ > 1 there exists a positive integer N such that for all real-valued sequences {aj} there exists a subset J of [0, 1] such that ∑∞ j=N |aj | ≤ λ |J| ∫ J∩E ∣∣∣∑∞j=0 ajrj(t)∣∣∣2 dt.

متن کامل

Bloch and Bmo Functions in the Unit Ball

We give a characterization of lacunary series in the Bloch space of the unit ball in C in terms of Taylor coefficients. We also characterize Bloch functions whose Taylor coefficients are nonnegative. The corresponding problems for BMOA are discussed as well.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2011

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm205-1-6